Braiding of differential forms and homotopy types
نویسندگان
چکیده
Let k be an arbitrary commutative ring. We associate fonctorially to any simplicial set X a differential graded algebra Ŵ∗(X) with a globally defined braiding, which is an improvement of a previous work [3,4]. If k= Z and with some mild finiteness conditions on X, we show that the quasi-isomorphisms class of Ŵ∗(X) as a braided differential graded algebra determines the p-adic homotopy type of X for all the prime numbers p, and also the rational homotopy type. As in [3,4], the proof uses some recent results of M.A. Mandell [5,6]. 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Tressage des formes différentielles et types d’homotopie Résumé. Soit k un anneau commutatif arbitraire. Nous associons de manière fonctorielle à un ensemble simplicial X une algèbre graduée Ŵ∗(X) avec un tressage défini de manière globale, ce qui améliore les conclusions d’un travail précédent [3,4]. Si k = Z et sous des hypothèses de finitude raisonnables sur X, nous montrons que la classe de quasiisomorphisme de l’algèbre différentielle graduée tressée 1 Ŵ∗(X) détermine le type d’homotopie p-adique de X pour tout nombre premier p, ainsi que le type d’homotopie rationnel. Comme dans [3,4], la démonstration utilise quelques résultats récents de M.A. Mandelle [5,6]. 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Version française abrégée 1. Formes différentielles quantiques sur la droite affine Soit k un anneau commutatif arbitraire. Nous désignons par Λ l’algèbre du type ∑s r=−∞αrq r , αr ∈ k, munie de la valuation définie par le plus petit entier r tel que α−r 6= 0 (et de la topologie ultramétrique associée). SoitW(t) la sous-algèbre de Λ[[t]] constituée des séries formelles f(t) = ∑∞ n=0 ant , an ∈Λ, telles que, pour tout s> 0, les coefficients anq tendent vers 0 lorsque n→∞ et vérifient l’identité 2 :
منابع مشابه
On The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملWeak units and homotopy 3 - types
We show that every braided monoidal category arises as End(I) for a weak unit I in an otherwise completely strict monoidal 2-category. This implies a version of Simpson’s weak-unit conjecture in dimension 3, namely that one-object 3-groupoids that are strict in all respects, except that the object has only weak identity arrows, can model all connected, simply connected homotopy 3-types. The pro...
متن کاملAnalytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method
In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...
متن کاملTHE ELZAKI HOMOTOPY PERTURBATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS
In this paper, Elzaki Homotopy Perturbation Method is employed for solving linear and nonlinear differential equations with a variable coffecient. This method is a combination of Elzaki transform and Homotopy Perturbation Method. The aim of using Elzaki transform is to overcome the deficiencies that mainly caused by unsatised conditions in some semi-analytical methods such as Homotopy Perturbat...
متن کاملWeak units and homotopy 3 - types For
We show that every braided monoidal category arises as End(I) for a weak unit I in an otherwise completely strict monoidal 2-category. This implies a version of Simpson’s weak-unit conjecture in dimension 3, namely that one-object 3-groupoids that are strict in all respects, except that the object has only weak identity arrows, can model all connected, simply connected homotopy 3-types. The pro...
متن کامل